Piecewise flat curvature and Ricci flow in three dimensions
نویسندگان
چکیده
منابع مشابه
Conformally Flat Manifolds with Nonnegative Ricci Curvature
We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...
متن کاملMean Curvature Driven Ricci Flow
We obtain the evolution equations for the Riemann tensor, the Ricci tensor and the scalar curvature induced by the mean curvature flow. The evolution for the scalar curvature is similar to the Ricci flow, however, negative, rather than positive, curvature is preserved. Our results are valid in any dimension.
متن کاملRicci Flow and Nonnegativity of Curvature
In this paper, we prove a general maximum principle for the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we construct complete manifolds with bounded nonnegative sectional curvature of dimension greater than or equal to four such that the Ricci flow does not preserve the nonnegativity of the sectio...
متن کاملRicci flow and manifolds with positive curvature
This is an expository article based on the author’s lecture delivered at the conference Lie Theory and Its Applications in March 2011, UCSD. We discuss various notions of positivity and their relations with the study of the Ricci flow, including a proof of the assertion, due to Wolfson and the author, that the Ricci flow preserves the positivity of the complex sectional curvature. We discuss th...
متن کاملLocal Curvature Bound in Ricci Flow
Theorem 2 Given n and v0 > 0, there exists ǫ0 > 0 depending only on n and v0 which has the following property. For any r0 > 0 and ǫ ∈ (0, ǫ0] suppose (Mn, g(t)) is a complete smooth solution to the Ricci flow on [0, (ǫr0) 2] with bounded sectional curvature, and assume that at t = 0 for some x0 ∈ M we have curvature bound |Rm |(x, 0) ≤ r 0 for all x ∈ Bg(0)(x0, r0), and volume lower bound Volg(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Mathematics
سال: 2017
ISSN: 1093-6106,1945-0036
DOI: 10.4310/ajm.2017.v21.n6.a3